Strictly Semi-transitive Operator Algebras

نویسنده

  • H. P. ROSENTHAL
چکیده

An algebra A of operators on a Banach space X is called strictly semitransitive if for all non-zero x, y ∈ X there exists an operator A ∈ A such that Ax = y or Ay = x. We show that if A is norm-closed and strictly semi-transitive, then every A-invariant linear subspace is norm-closed. Moreover, LatA is totally and well ordered by reverse inclusion. If X is complex and A is transitive and strictly semitransitive, then A is WOT-dense in L(X). It is also shown that if A is an operator algebra on a complex Banach space with no invariant operator ranges, then A is WOT-dense in L(X). This generalizes a similar result for Hilbert spaces proved by Foiaş.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On topological transitive maps on operator algebras

We consider the transitive linear maps on the operator algebra $B(X)$for a separable Banach space $X$. We show if a bounded linear map is norm transitive on $B(X)$,then it must be hypercyclic with strong operator topology. Also we provide a SOT-transitivelinear map without being hypercyclic in the strong operator topology.

متن کامل

Linear Approximation of Semi-algebraic Spatial Databases Using Transitive Closure Logic, in Arbitrary Dimension

We consider n-dimensional semi-algebraic spatial databases. We compute in first-order logic extended with a transitive closure operator, a linear spatial database which characterizes the semi-algebraic spatial database up to a homeomorphism. In this way, we generalize our earlier results to semi-algebraic spatial databases in arbitrary dimensions, our earlier results being true for only two dim...

متن کامل

ar X iv : 0 90 8 . 07 29 v 2 [ m at h . FA ] 1 0 A ug 2 00 9 CONFLUENT OPERATOR ALGEBRAS AND THE CLOSABILITY PROPERTY

Certain operator algebras A on a Hilbert space have the property that every densely defined linear transformation commuting with A is closable. Such algebras are said to have the closability property. They are important in the study of the transitive algebra problem. More precisely, if A is a two-transitive algebra with the closability property, then A is dense in the algebra of all bounded ope...

متن کامل

Bi-Strictly Cyclic Operators

The genesis of this paper is the construction of a new operator that, when combined with a theorem of Herrero, settles a question of Herrero. Herrero proved that a strictly cyclic operator on an infinite dimensional Hilbert space is never triangular. He later asks whether the adjoint of a strictly cyclic operator is necessarily triangular. We settle the question by constructing an operator T fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005